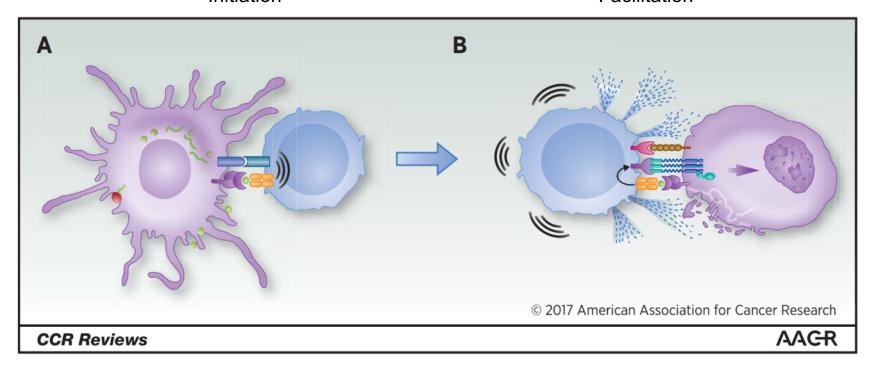
Turning Tundra Tumor into a Destination Brimming with Hungry T-cells

James L. Gulley, M.D., Ph.D., F.A.C.P.
Chief, Genitourinary Malignancies Branch &
Director, Medical Oncology Service
Center for Cancer Research
National Cancer Institute, NIH

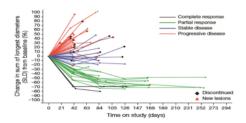
Tundra vs. tropical island

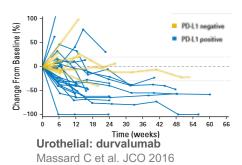
Barren, cold Tumor: No T-cells

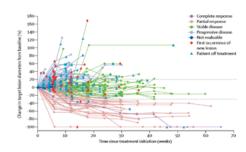

Teeming with life, hot Tons of activated T-cells

Requirements for Effective Immunotherapy

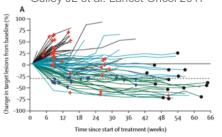
Generation of Immune Response "Initiation"


Functional Effector Cells within the Tumor "Facilitation"

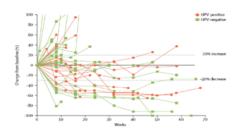


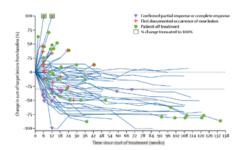

PD-1/PD-L1 inhibition

Rapid, deep, <u>durable</u> responses Across a wide range of tumors Seen in a subset of patients Not seen in #ProstateCancer

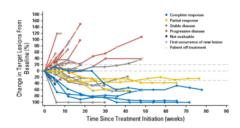


Urothelial: atezolizumabPowles T et al. Nature 2014

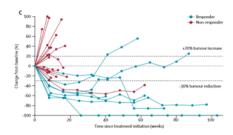



NSCLC: avelumab
Gulley JL et al. Lancet Oncol 2017

NSCLC (squamous only): nivolumab Rizvi NA et al. Lancet Oncol 2015

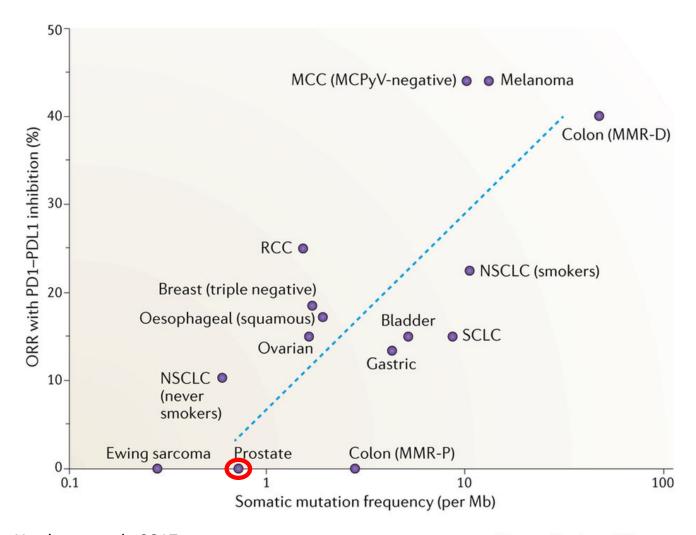


HNSCC: pembrolizumab
Seiwert TY et al. Lancet Oncol 2016


MSI hi CRC: nivolumab

Overman MJ et al. Lancet Oncol 2017

Urothelial: avelumab


Apolo AB et al. J Clin Oncol 2017

Urothelial: pembrolizumab

Plimack ER P et al. Lancet Oncol 2017

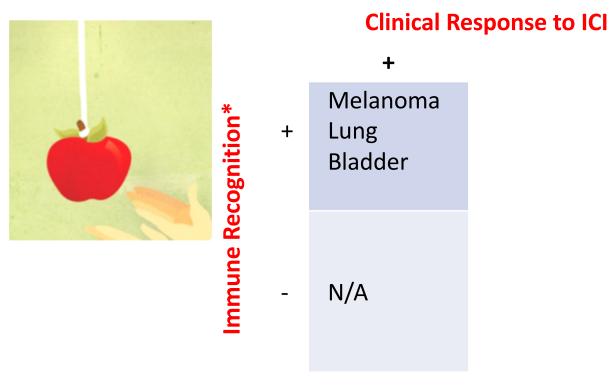
Yarchoan et al., 2017

Nature Reviews | Cancer

The prevalence of somatic mutations across human cancer types

MSI Hi Prostate Cancer

- Approval with pembrolizumab
- Incidence
 - Localized PC ~2%
 - Autopsy series of mCRPC ~12%
 - Pritchard et al., Nature Com 2014
 - Ongoing testing suggests <u>5-6%</u> of mCRPC
- Suggests <u>all</u> patients with mCRPC should be tested


Pembrolizumab Response Rate by Tumor Type.*						
Tumor Type	No. of Tumors	Patients with a Response	Range of Response Duration			
		no. (%)	mo			
Colorectal cancer	90	32 (36)	1.6+ to 22.7+			
Endometrial cancer	14	5 (36)	4.2+ to 17.3+			
Biliary cancer	11	3 (27)	11.6+ to 19.6+			
Gastric or gastroesophageal junction	9	5 (56)	5.8+ to 22.1+			
Pancreatic cancer	6	5 (83)	2.6+ to 9.2+			
Small-intestine cancer	8	3 (38)	1.9+ to 9.1+			
Breast cancer	2	2 (100)	7.6 to 15.9			
Prostate cancer	2	1 (50)	9.8+			
Other cancers	7	3 (43)	7.5+ to 18.2+			

^{*} Response was as defined by RECIST. "Other cancers" includes one patient each with the following tumor types: bladder, esophageal, sarcoma, thyroid, retroperitoneal, small-cell lung cancer, and renal cell cancer (includes two patients who could not be evaluated and were considered not to have had a response). A + sign indicates that the response was ongoing at the time of data cutoff.

Easy Pickin' is Over

What's left?

^{*}In part based on recognition of immune relevant mutations

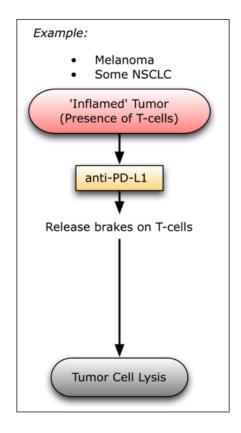
What's left?

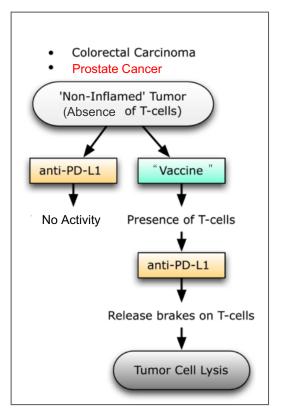
Clinical Response to ICI

+ -

Melanoma Primary Refractory
Lung Acquired Resistance
Bladder

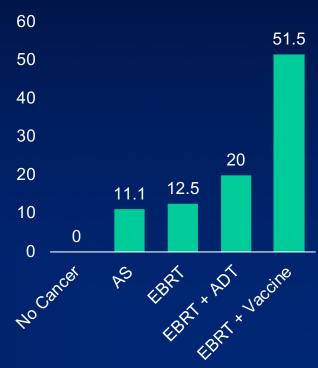
Prostate


N/A CRC
Pancreatic

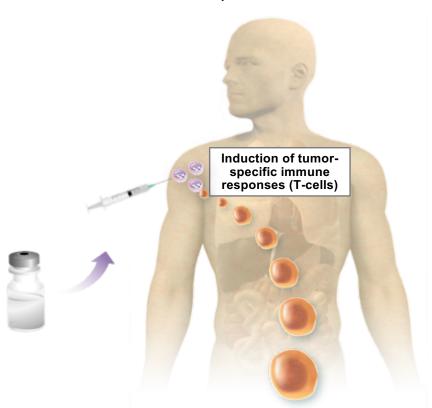

-Next frontier

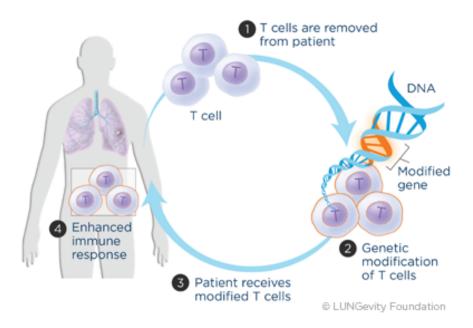
-Will require combination therapy strategies

^{*}In part based on recognition of immune relevant mutations


Working Model for T-cell infiltration and Immunotherapy Implications

Anti-tumor Immune Response More Efficient with <u>Vaccine</u> (Prostvac) vs. SOC


	Cancer-free controls (n = 15)	AS (n = 9)	EBRT (no vaccine; n = 8)	EBRT + ADT (n = 15)	EBRT+ Vaccine (n = 33)
Western blot	0 (0%)	1 (11.1%)	1 (12.5%)	3 (20.0%)	15 (45.5%)
Antigen array	0 (0%)	1 (11.1%)	0 (0%)	2 (13.3%)	7 (21.2%)
Overall	0 (0%)	1 (11.1%)	1 (12.5%)	3 (20.0%)	17 (51.5%)


Nesslinger... Schlom, Gulley et al, Clin Ca Res, 2010

Developing T-cells to fight

Therapeutic Vaccine

Adoptive Cellular Therapy (ACT)

What is sufficient to initiate an immune response?

	ICI only	Vaccine		ICI only Vaccine		AC	т
	No Ag	Self Ag	Neo Ag	Self Ag	Neo Ag		
Logistics	simple						
Needs hot tumor	Yes						
Immunogenicity	N/A						
Target Selection	N/A						

What is sufficient to initiate an immune response?

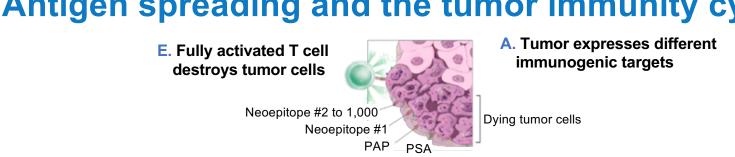
	ICI only	Vaccine		Vaccine ACT	
	No Ag	Self Ag	Neo Ag	Self Ag	Neo Ag
Logistics	simple	simple	complex	complex	complex
Needs hot tumor	Yes	No		N	O
Immunogenicity	N/A				
Target Selection	N/A				

What is sufficient to initiate an immune response?

	ICI only	Vaccine		ACT	
	No Ag	Self Ag	Neo Ag	Self Ag	Neo Ag
Logistics	simple	simple	complex	complex	complex
Needs hot tumor	Yes	No		N	O
Immunogenicity	N/A	weak	strong	variable*	
Target Selection	N/A				

^{*}Typically only 1 target rather than potential for multiple targets / epitopes in a vaccine. TCR Catch Bond

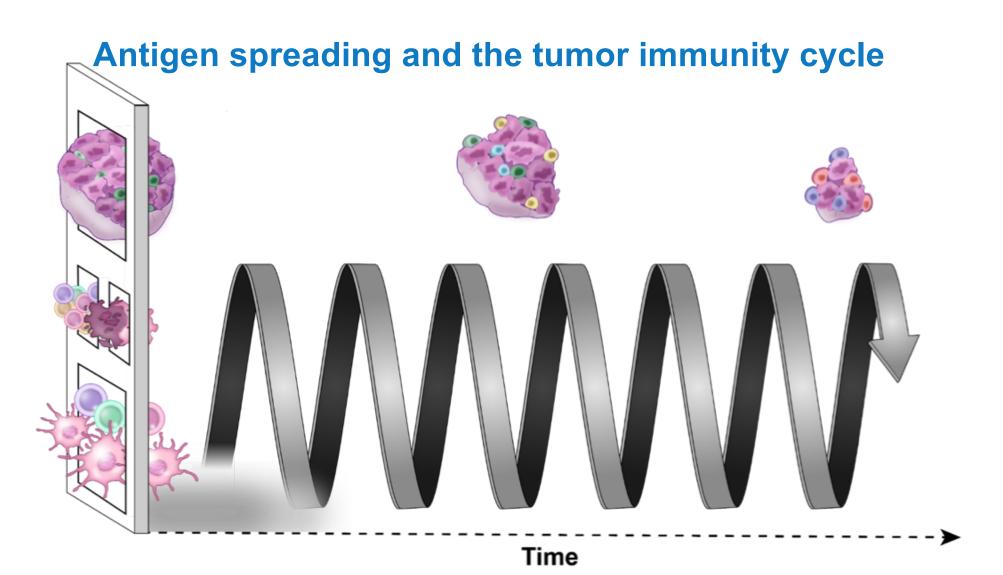
How to initiate an immune response


	ICI only	Vaccine		ACT	
	No Ag	Self Ag	Neo Ag	Self Ag	Neo Ag
Logistics	simple	simple	complex	complex	complex
Needs hot tumor	Yes	No		N	O
Immunogenicity	N/A	weak strong variable*		able*	
Target Selection	N/A	Immune System		Scientists	

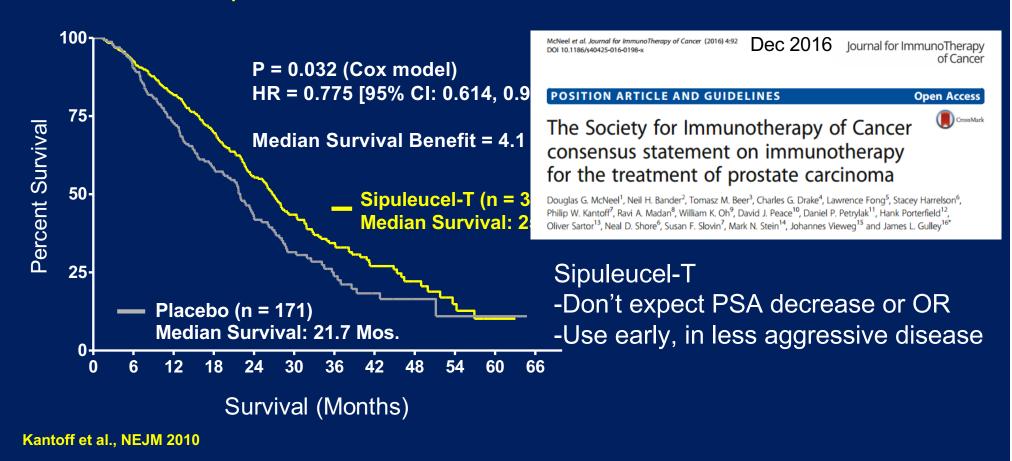
^{*}Typically only 1 target rather than potential for multiple targets / epitopes in a vaccine. TCR Catch Bond

Do you need to target a neo-antigen to get a high avidity immune response?

Antigen spreading and the tumor immunity cycle

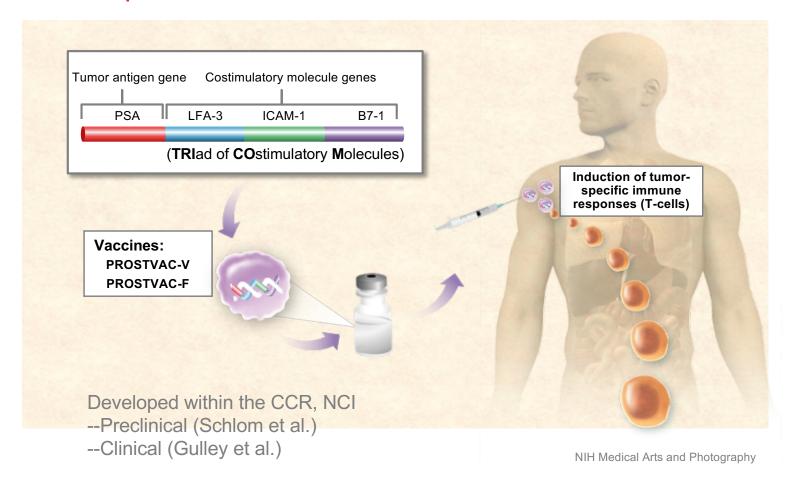


D. Newly activated tumorspecific T cells form in greater concentration and variation



B. Dendritic cell phagocytoses tumour cell along with a transfer of tumor-specific antigens

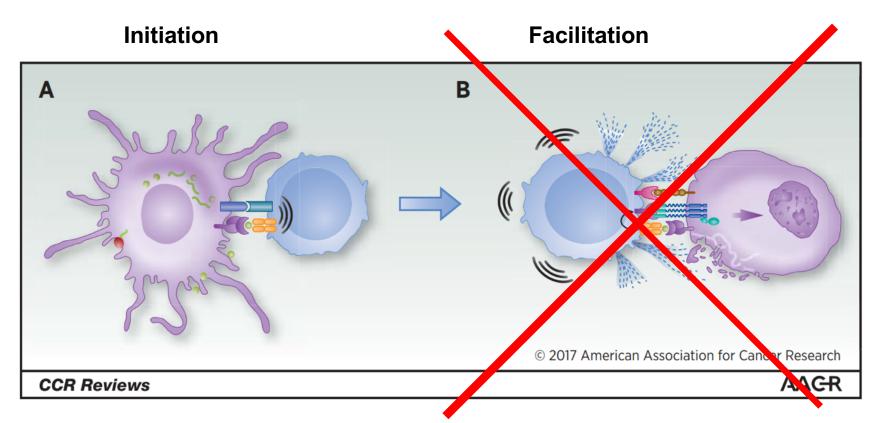
C. Mature dendritic cell presents tumor-specific antigens to T cells



Sipuleucel-T: IMPACT trial

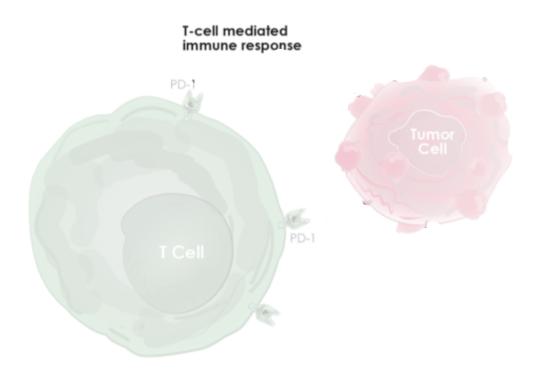
PROSTVAC-VF

Proposed Mode of Action


Research Article

Immune Impact Induced by PROSTVAC (PSA-TRICOM), a Therapeutic Vaccine for Prostate Cancer

James L. Gulley¹, Ravi A. Madan¹, Kwong Y. Tsang¹, Caroline Jochems¹, Jennifer L. Marté¹, Benedetto Farsaci¹, Jo A. Tucker¹, James W. Hodge¹, David J. Liewehr², Seth M. Steinberg², Christopher R. Heery¹, and Jeffrey Schlom¹


Test	Result	Comment
PSA Specific Immune response	56.7% (59/104)	28 days after last vaccine
Median fold increase in PSA specific immune response	5X	# of PSA specific T-cells identical to flu T-cells
Antigen Spreading	67.9% (19/28)	
Anti-PSA Ab	0.57% (2/349)	

Requirements for Effective Immunotherapy

Bilusic M, Madan RA, Gulley JL Clin Ca Res 2017

Importance of PD-1/PD-L1 blockade

NIH. News Headlines: https://ccr.cancer.gov/news/article/investigators-lead-first-human-trials-of-new-immunotherapy-drug (accessed August 2017)

Prostvac + Ipi or Nivo or Comb.

Patient Population: Localized Prostate Cancer, candidates for RP

Cohort 1: Vaccine + Ipi + Nivo (n=10, mCRPC)

Cohort 2: Vaccine + Nivo (n=16)

Cohort 3: Vaccine + Ipi (n=16)

Cohort 4: Vaccine + Ipi + Nivo (n=16)

Baseline	Week 0	Week 2	Week 5	Week 8	Week 9
	Prostvac-V	Prostvac-F	Prostvac-F	Prostvac-F	
Biopsy		lpilimumab	lpilimumab	-	RP
		Nivolumab	Nivolumab	Nivolumab	

Ipilimumab 1 mg/kg, Nivolumab 240 mg

Prostvac + Ipi or Nivo or Comb.

Patient Population: Localized Prostate Cancer, candidates for RP

Cohort 1: Vaccine + Ipi + Nivo (n=10, mCRPC)

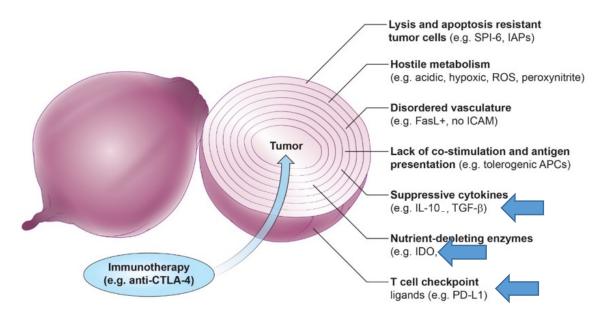
Cohort 2: Vaccine + Nivo (n=16)

Conort 3: Vaccine + Ipi (n=16)

Cehort 4: Vaccine + Ipi + Nivo (n-16)

Primary analysis: Immune infiltrate by IHC

Secondary: Safety

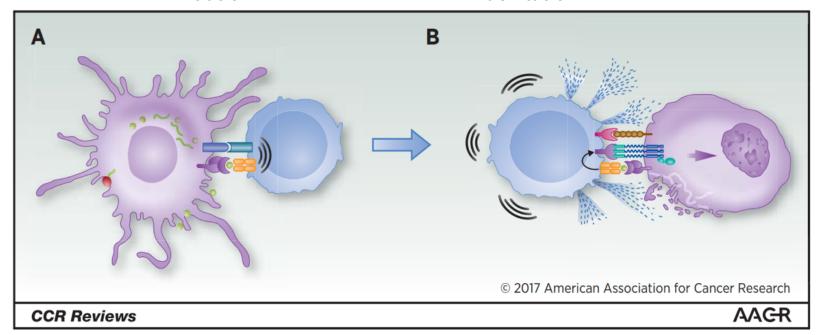

Imaging

Peripheral immune analysis

**In depth analysis of change in tumor microenvironment post immunotherapy -RNA Seq, multiplex IF, TCR Seq, NGS assays for MSI etc.

(NCT02933255) PI Gulley

Multi-layered immunosuppression


- Tumors insulate themselves with dense layers of immunosuppressive stroma
- Overcoming the many layers of interconnected and often functionally redundant immune suppressive mechanisms represents a daunting challenge for tumor-specific T cells
- Immunotherapy can "peel back" the layers of local immune suppression, thereby restoring the capacity of T cells to eradicate the tumor

Requirements for Effective Immunotherapy

Initiation

Facilitation

Vaccine (brachyury) IL-15 (NK and T-cells)

PD-L1 TGF-beta IDO

Brachyury Makes Cancer Cells Behave Badly

- Transcription Factor Important in Embryogenesis
 - Master Driver of Metastatic Process (EMT)
 - Involved in Drug Resistance
 - Associated with Stem-like Properties

Brachyury in Prostate Cancer

Biology of Human Tumors

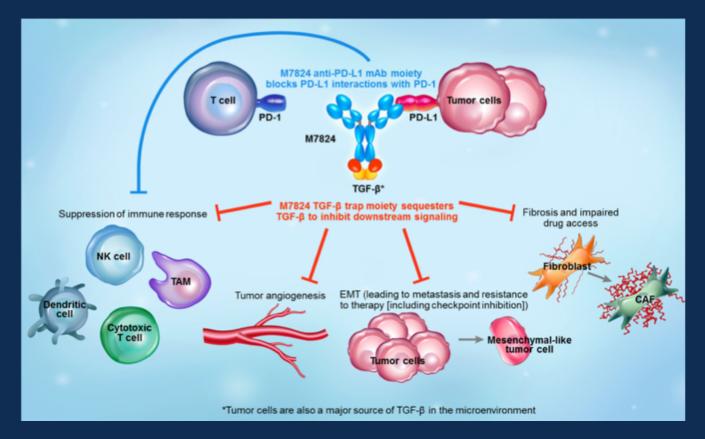
Clinical
Cancer
Research

T-box Transcription Factor Brachyury Is Associated with Prostate Cancer Progression and Aggressiveness

Filipe Pinto^{1,2}, Nelma Pértega-Gomes^{1,2}, Márcia S. Pereira^{1,2}, José R. Vizcaíno³, Pedro Monteiro⁴, Rui M. Henrique^{5,6,7}, Fátima Baltazar^{1,2}, Raquel P. Andrade^{1,2}, and Rui M. Reis^{1,2,8}

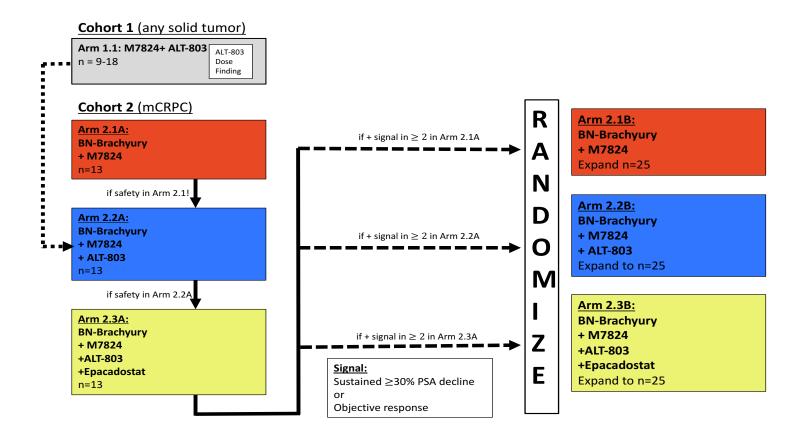
Overexpressed in cancer vs. normal (protein and mRNA) Correlates with aggressive tumors, invasion

Clinical Cancer Research

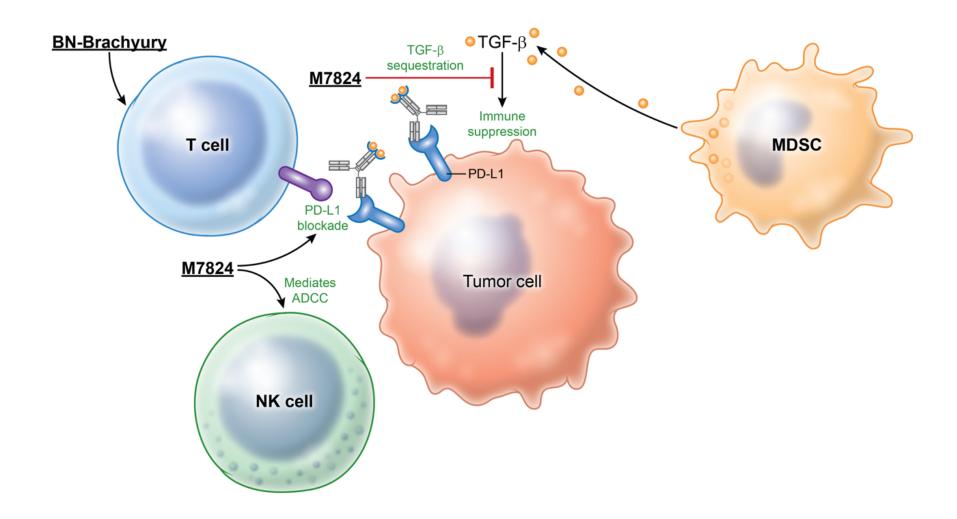


Christopher R. Heery¹, Claudia Palena¹, Sheri McMahon², Renee N. Donahue¹, Lauren M. Lepone¹, Italia Grenga¹, Ulrike Dirmeier³, Lisa Cordes², Jenn Marté², William Dahut², Harpreet Singh², Ravi A. Madan², Romaine I. Fernando¹, Duane H. Hamilton¹, Jeffrey Schlom¹, and James L. Gulley²

- Well tolerated (no DLT)
- 28 of 34 (82%) patients developed brachyury-specific CD4 and/or CD8 T-cell responses after vaccination


M7824

- M7824 is an innovative firstin-class bifunctional fusion protein
- Phase I dose escalation data presented at ASCO 2017
 - n=19
 - Well tolerated
 - Sequesters all activated TGF-beta in plasma throughout dosing period
 - Promising clinical activity
 - 1 CR
 - 3 PRs



Clin Ca Res in press

QuEST (Quick Efficacy Seeking Trial)*

^{*}NCI sponsored trial in review, FDA "May Proceed" last Friday (19 Jan 2018)

Conclusions

- T-cell poor tumors may require a "spark" to get the immune system to recognize and seek to destroy the tumor.
 - One of the most efficient ways of doing this is with vaccine
 - Sipuleucel-T is approved in the US
- There are some MSI hi prostate cancers (2-10% of mCRPC) that may respond to PD-1/PDL-1 inhibition (MSI testing)
- The tumor immunity cycle is an ongoing iterative process that may lead to an individualized evolution of the immune response to focus on targets most immunologically relevant for a given patient (e.g., neoantigens) (#PrecisionMedicine #PersonalizedMedicine #ImmuneSculpting)
- Approaches that both steer the immune system (e.g., vaccine) and allow effector cells to get to and remain functional within the TME (e.g., immune checkpoint blockade) will be optimal
 - Ongoing trials should help determine the utility of this approach